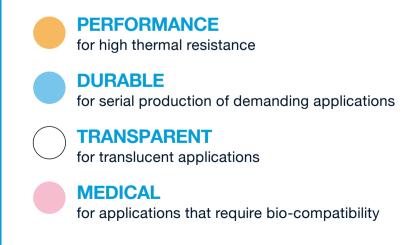

Fabrica Materials

Contact Us

NANODIMENSION

sales@nano-di.com www.nano-di.com November 2024


Materials

Enable manufacturers to get true plastic and composite material properties with the highest precision in the market.

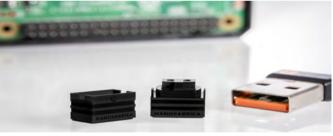
The wide range of materials displays a variety of mechanical properties, varying degrees of thermal resistance and specialized properties such as transparency and biocompatibility. Each material series brings unique advantages, giving you the flexibility to select the material best suited for your micro-manufacturing needs.

NANODIMENSION

Materials Data Sheet

	BASED ON STANDARD	PERFOR	RMANCE	DUR	ABLE	TRANSPARENT	MEDICAL
		P-900	P-910	D-810	D-820	T-700	M -810
Tensile strength (Mpa)	ASTM D-1708	60	70	50	21	38	50
Young's modulus (MPa)		660	635	550	321	460	550
Elongation at break (%)		11	15	11	7.5	12	11
Flexural strength (MPa)	ASTM D-790	98	110	80	31.4	73	80
Flexural modulus (MPa)		2000	2600	1600	512	1350	1600
Flexural max strain (%)		7.6	5.0	6	12	6.5	6
Shore hardness	Scale D ASTM D 2240	90	89	88	76	84	88
Tg (°C)	DMA ASTM D 7028	140	184	120	55	100	120
CTE (ppm/K) 150°C-220°C	ТМА		133				
Df (100GHz) before/after 48h water immersion	ASTM D150	0.017	0.012/ 0.012	0.017/ 0.017		0.029/ 0.023	0.017/ 0.017
Dk (100GHz) before/after 48h water immersion	ASTM D 570 – 98	2.14	2.96/ 2.97	2.85/ 2.86		2.92/ 2.91	2.85/ 2.86
Density of liquid resin (gr/cm^3)	ASTM D1475	1.17	1.14	1.08	1.08	1.09	1.08
Density (g/cm3)	ASTM D792	1.27	1.24	1.15	1.19	1.15	1.15
Refractive index 448nm-1550nm						1.51-1.52	
ISO-10993						Non cytotoxic	Non cytotoxic

This data represents typical tested values at a controlled environment. Material properties may vary with part geometry, print orientation, print settings, environmental conditions and additional variables. To learn more about specific testing conditions, please contact a Nano Dimension representative. Specific performance of customer parts should be tested in accordance with customer's specifications. The above detailed data should not be used to establish design, quality control, or specification limits, and is not intended to substitute customer's own testing to determine suitability for a particular application.


Performance

The Performance series is designed to withstand high temperatures, perfect for miniaturized parts in high performance applications such as electronics or injection molding.

P-900 is a high-resolution, composite ceramic loaded, material with upgraded mechanical properties that offers high-wear resistance for demanding applications.

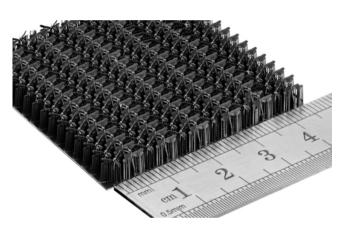
P-900

Tensile strength (MPa)	60
Young's modulus (MPa)	660
Elongation at break (%)	11
Flexural strength (MPa)	98
Flexural modulus (MPa)	2000
Flexural max strain (%)	7.6
Shore hardness (scale D)	90
Tg (°C)	140
Df (@10Ghz)	0.017
Dk (@10Ghz)	2.14
Density (g/cm³)	1.27

Performance

P-910 has an increased glass transition temperature of over 180°C and a heat deflection temperature of over 200°C, for extreme thermal performance. Ideal for prototyping and manufacturing precision parts that require high heat resistance, such as injection molding.

NANODIMENSION


P-910

Tensile strength (MPa)	70
Young's modulus (MPa)	635
Elongation at break (%)	15
Flexural strength (MPa)	110
Flexural modulus (MPa)	2600
Flexural max strain (%)	5
Shore hardness (scale D)	89
Tg (°C)	184
CTE (ppm/K) 150°C - 220°C	133
Df (10GHz) before/after 48h water immersion	0.012/0.012
Dk (10GHz) before/after 48h water immersion	2.96/2.97
Density of cured bulk (g/cm3)	1.24

Durable

The Durable series of materials boasts versatile mechanical properties offering both rigid and semi-rigid options for demanding applications. These materials are ideal for serial production, such as consumer smart devices.

The **D-810** is a durable, versatile ABS-like material that enables high structural integrity with high-yield and cost-efficiency.

D-810

Tensile strength (MPa)	50
Young's modulus (MPa)	550
Elongation at break (%)	11
Flexural strength (MPa)	80
Flexural modulus (MPa)	1600
Flexural max strain (%)	6.0
Shore hardness (scale D)	88
Tg (°C)	120
Df (10GHz) before/after 48h water immersion	0.017/0.017
Dk (10GHz) before/after 48h water immersion	2.85/2.86
Density (g/cm³)	1.15

Durable

D-820 is a PVC-like material. Components produced with this material have a high endurance over repeated use where flexibility is required, for example, in complex assemblies or parts that cannot be produced by a mold.

D-820

Young's modulus (MPa) 321 Elongation at break (%) 7.5 Flexural strength (MPa) 31.4 Flexural modulus (MPa) 512 Flexural max strain (%) 12 Shore hardness (scale D) 76 Tg (°C) 55 Density of cured bulk (g/cm3) 1.19	Tensile strength (MPa)	21
Flexural strength (MPa) 31.4 Flexural modulus (MPa) 512 Flexural max strain (%) 12 Shore hardness (scale D) 76 Tg (°C) 55	Young's modulus (MPa)	321
Flexural modulus (MPa) 512 Flexural max strain (%) 12 Shore hardness (scale D) 76 Tg (°C) 55	Elongation at break (%)	7.5
Flexural max strain (%) 12 Shore hardness (scale D) 76 Tg (°C) 55	Flexural strength (MPa)	31.4
Shore hardness (scale D) 76 Tg (°C) 55	Flexural modulus (MPa)	512
Tg (°C) 55	Flexural max strain (%)	12
	Shore hardness (scale D)	76
Density of cured bulk (g/cm3) 1.19	Tg (°C)	55
	Density of cured bulk (g/cm3)	1.19

Transparent

The Transparent series are PMMA-like (polymethyl methacrylate) materials that are perfectly suited for production of parts that require varying levels of translucency such as optical elements, microfluidic chips and medical devices.

The **T-700** is a durable, non-cytotoxic rigid material that enables high structural integrity with high accuracy.

T-700

Tensile strength (MPa)	38
Young's modulus (MPa)	460
Elongation at break (%)	12
Flexural strength (MPa)	73
Flexural modulus (MPa)	1350
Flexural max strain (%)	6.5
Shore hardness (scale D)	84
Tg (°C)	100
Df (10GHz) before/after 48h water immersion	0.029/0.023
Dk (10GHz) before/after 48h water immersion	2.92/2.91
Density (g/cm³)	1.15
ISO-10993	Non-Cytotoxic

NANODIMENSION

Medical

The Medical series of materials have been specifically designed for use in applications that require bio-compatibility.

The M-810 is a non-cytotoxic material according to ISO-10993 (GLP Level)

This material is suitable for tiny and precise medical device components such cannula, medical diagnostics, imaging and manifolds.

NANODIMENSION

M-810

Tensile strength (MPa)	50
Young's modulus (MPa)	550
Elongation at break (%)	11
Flexural strength (MPa)	80
Flexural modulus (MPa)	1600
Flexural max strain (%)	6.0
Shore hardness (scale D)	88
Tg (°C)	120
Df (10GHz) before/after 48h water immersion	0.017/0.017
Dk (10GHz) before/after 48h water immersion	2.85/2.86
Density (g/cm³)	1.15
ISO-10993	Non-Cytotoxic

Anything's possible if you've got a FABRICA!

Precision parts are a huge deal across multiple industries.

The Fabrica micro-manufacturing hub is designed to free innovation from the constraints of traditional manufacturing.

With its incredibly high resolution and repeatable micro-level accuracy and precision, Fabrica transforms micro-additive manufacturing and empowers you to unleash innovation.

In addition to our Fabrica precision materials, the Fabrica systems allow the the printing of a wide range of external resins.

Please follow the guidance table to help ensure superior print results and to prevent damage to the system. Be sure to refer to the safety and technical data sheets of the material supplier to ensure compatibility and compliance.

Parameter	Value	
Wavelength (nm)	385	
Viscosity at printing temperature (cP)	50 - 300	
Temperature TERA GIGA	Room Temperature – 40C Room Temperature	
Chemical compatibility (resin – printer parts)	 Ensure the material compatibility with: Aluminum Aluminum coated with black (hard) anodize FEP Stainless steel Steel Wet painted Aluminum Polycarbonate 	
Safety	Refer to resin safety data sheet for safety and handling guidelines	

Notes

Contact Us

sales@nano-di.com www.nano-di.com November 2024